

Basic Profile Version 1.0
Working Group Draft

Date: 2003/01/24 09:47:33
This revision:

http://www.ws-i.org/Profiles/Basic/2003-01/BasicProfile-1.0-WGD.html
Editors:

Keith Ballinger, Microsoft
David Ehnebuske, IBM
Martin Gudgin, Microsoft
Mark Nottingham, BEA Systems
Prasad Yendluri , webMethods

Administrative contact:
secretary@ws-i.org

Copyright © 2002-2003 by The Web Services-Interoperability Organization (WS-I) and
Certain of its Members. All Rights Reserved.

Abstract
This document defines the WS-I Basic Profile, consisting of a set of non-proprietary Web
services specifications, along with clarifications and amendments to those specifications
which promote interoperability.

Status of this Document
This document is a Working Group Draft; it has been accepted by the Working Group as
reflecting the current state of discussions. It is a work in progress, and should not be
considered authoritative or final; other documents may supercede this document.

The Working Group believes this Working Group Draft to be substantively complete with
regards to the technical refinements, clarifications and constraints specified. The Working

Group will be publishing another Working Group Draft reflecting the remaining issue
resolutions, additional rationale text, and editorial changes within the next month, and
intends to pursue an aggressive schedule for completion of its work. Therefore, the Working
Group invites all parties interested in contributing to the review and feedback process of the
Basic Profile v1.0 to do so based on this version so that any technical concerns expressed
can be considered by the Working Group before it concludes its formal review period.

Notice
The material contained herein is not a license, either expressly or impliedly, to any
intellectual property owned or controlled by any of the authors or developers of this material
or WS-I. The material contained herein is provided on an "AS IS" basis and to the maximum
extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS,
and the authors and developers of this material and WS-I hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to,
any (if any) implied warranties, duties or conditions of merchantability, of fitness for a
particular purpose, of accuracy or completeness of responses, of results, of workmanlike
effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO WARRANTY OR
CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO
THIS MATERIAL.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR WS-I BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES
WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES.

Feedback
The Web Services-Interoperability Organization (WS-I) would like to receive input,
suggestions and other feedback ("Feedback") on this work from a wide variety of industry
participants to improve its quality over time.

By sending email, or otherwise communicating with WS-I, you (on behalf of yourself if you
are an individual, and your company if you are providing Feedback on behalf of the company)
will be deemed to have granted to WS-I,the members of WS-I, and other parties that have
access to your Feedback, a non-exclusive, non-transferable, worldwide, perpetual,
irrevocable, royalty-free license to use, disclose, copy, license, modify, sublicense or
otherwise distribute and exploit in any manner whatsoever the Feedback you provide
regarding the work. You acknowledge that you have no expectation of confidentiality with
respect to any Feedback you provide. You represent and warrant that you have rights to

provide this Feedback, and if you are providing Feedback on behalf of a company, you
represent and warrant that you have the rights to provide Feedback on behalf of your
company. You also acknowledge that WS-I is not required to review, discuss, use, consider
or in any way incorporate your Feedback into future versions of its work. If WS-I does
incorporate some or all of your Feedback in a future version of the work, it may, but is not
obligated to include your name (or, if you are identified as acting on behalf of your company,
the name of your company) on a list of contributors to the work. If the foregoing is not
acceptable to you and any company on whose behalf you are acting, please do not provide
any Feedback.

Feedback on this document should be directed to wsbasic_comment@ws-i.org.

Table of Contents
1. Introduction
1.1. Guiding Principles
1.2. Notational Conventions
2. Profile Conformance
2.1. Conformance of Artifacts
2.2. Conformance of Services and Consumers
2.3. Conformance Annotation
3. Messaging
3.1. XML Representation of SOAP Messages
3.2. The SOAP Processing Model
3.3. Using SOAP in HTTP
4. Service Description
4.1. Document Structure
4.2. Types
4.3. Messages
4.4. Port Types
4.5. Bindings
4.6. Ports
4.7. Services
4.8. SOAP Binding
4.9. XML Schema
5. Service Publication and Discovery
5.1. bindingTemplates
5.2. tModels
6. Security
6.1. The Use of HTTPS
6.2. Certificate Authority
6.3. Permitted HTTPS Encryption Algorithms

1. Introduction
This document defines the WS-I Basic Profile, consisting of a set of non-proprietary Web
services specifications, along with clarifications and amendments to those specifications
which promote interoperability.

Section 1 introduces the profile, its scope, and the philosophy that it takes to interoperability.

Section 2, "Profile Conformance," explains what it means to be conformant to the Basic
Profile. Each subsequent section addresses a component specification of the Profile, and
consists of two parts; an overview of the approach to the specification taken, followed by
subsections which address individual parts of the component specification.

1.1 Guiding Principles

The Basic Profile was developed according to a set of principles that, together, form the
philosophy of the profile, as it relates to bringing about interoperability. This section
documents these guidelines.

No guarantee of interoperability
It is impossible to completely guarantee the interoperability of a particular service.
However, the Profile does address the most common problems that implementation
experience has revealed to date.

Application semantics
Although communication of application semantics can be facilitated by the
technologies that comprise the Profile, assuring the common understanding of those
semantics is out of scope.

Testability
When possible, the Profile makes statements that are testable. However, such
testability is not required. Preferably, testing is achieved in a non-intrusive manner
(e.g., examining artifacts "on the wire"). However, testability of statements is not
required.

Strength of requirements
The Profile makes strong requirements (e.g., MUST, MUST NOT) wherever feasible;
if there are legitimate cases where such a requirement cannot be met, conditional
requirements (e.g., SHOULD, SHOULD NOT) are used. Optionally is avoided as
much as possible.

Restriction vs. relaxation
When amending the requirements of referenced specifications, the Profile may
restrict their requirements, but does not relax them (i.e., change a MUST to a MAY).
Optional and conditional requirements introduce ambiguity and mismatches between
implementations.

Multiple mechanisms
If a referenced specification allows multiple mechanisms to be used interchangeably,
the Profile selects those that are well-understood, widely implemented and useful.

Extraneous or underspecified mechanisms and extensions introduce complexity and
therefore reduce interoperability.

Future compatibility
When possible, the Profile aligns its requirements with in-progress revisions to the
specifications it references (e.g., SOAP 1.2, WSDL 1.2). This aids implementers by
enabling a graceful transition, and assures that WS-I does not 'fork' from these efforts.
When the Profile cannot address an issue in a specification it references, this
information is communicated to the appropriate body to assure their consideration.

Compatibility with deployed services
Backwards compatibility with deployed Web services is not a goal for the Profile, but
due consideration is given to it; the Profile does not introduce a change to existing
specifications unless there are specific interoperability issues.

Focus on interoperability
Although there are potentially a number of inconsistencies and design flaws in the
referenced specifications, the Profile only addresses those that affect interoperability.

Conformance targets
Where possible, the Profile places requirements on artifacts (e.g., WSDL descriptions,
SOAP messages) rather than the producing or consuming software's behaviors or
roles. Artifacts are concrete, making them easier to verify and therefore making
conformance easier to understand and less error-prone.

Lower-layer interoperability
The Profile speaks to interoperability at the application layer; it assumes that
interoperability of lower-layer protocols (e.g., TCP, IP, Ethernet) is adequate and well-
understood. Similarly, statements about application-layer substrate protocols (e.g.,
SSL/TLS, HTTP) are only made when there is an issue affecting Web services
specifically; WS-I does not attempt to assure the interoperability of these protocols as
a whole. This assures that WS-I's expertise in and focus on Web services standards
is used effectively.

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119.

Normative statements in the profile (i.e., those impacting conformance, as outlined in section
3) are presented in the following manner:

RnnnnStatement text here.

where "nnnn" is replaced by the statement number. Each statement will contain exactly one
requirement level keyword (e.g., "MUST") and one conformance target keyword (e.g.,
"MESSAGE").

Some statements clarify the referenced specification(s), but do not place additional
constraints upon implementations. For convenience, clarifications are annotated in the
following manner: C

Some statements are derived from ongoing standardization work on the referenced
specification(s). For convenience, forward-derived statements are annotated in the following
manner: xxxx, where "xxxx" is an identifier for the specification (e.g., "SOAP12" for SOAP
Version 1.2, currently under development). Note that because such work is not complete,
the specification which the requirement is derived from may change; this information is
included only as a convenience to implementers.

This specification uses a number of namespace prefixes throughout; their associated URIs
are listed below. Note that the choice of any namespace prefix is arbitrary and not
semantically significant.

• soap - http://schemas.xmlsoap.org/soap/envelope/
• xsi - http://www.w3.org/2001/XMLSchema-instance
• xsd - http://www.w3.org/2001/XMLSchema
• soapenc - http://schemas.xmlsoap.org/soap/encoding/
• wsdl - http://schemas.xmlsoap.org/wsdl/
• soapbind - http://schemas.xmlsoap.org/wsdl/soap/

2. Profile Conformance
Conformance to the Basic Profile is defined by adherence to the specifications on which the
profile is based (as outlined in the remainder of the document), subject to the refinements,
interpretations, and clarifications set forth.

To allow the description of conformance in different contexts, the profile defines a number of
conformance targets, allowing the conformance testing and certification of artifacts (such as
SOAP messages and WSDL descriptions), Web services themselves, and software that is
used in conjunction with a conformant Web Service.

The criteria for conformance is defined by requirement statements, which are associated
with conformance targets (denoted with capital letters, e.g., MESSAGE) and use
requirement levels (using RFC2119 language, e.g., MUST) to indicate the nature of the
requirement. Requirement statements are individually identified (e.g., r999) for convenience.
Additional text may be included to illuminate the requirements (e.g., rationale and examples);
however, requirement statements alone should be considered in determining conformance.

The sections below describe this profile's conformance targets, from the basic artifacts (upon
which requirements are directly placed) to the conformance of services and software, which
is derived from these artifacts and additional requirements.

2.1 Conformance of Artifacts

The most basic level of conformance is that of an artifact. This profile makes requirement
statements about three kinds of artifacts;

• MESSAGE - protocol elements that are exchanged, usually over a network, to effect
a Web service (i.e., SOAP/HTTP messages)

• DESCRIPTION - descriptions of types, messages, interfaces and their concrete
protocol and data format bindings, and the network access points associated with
Web services (i.e., WSDL descriptions)

• REGDATA - statements about Web services that are used to discover their
capabilities (e.g., UDDI tModels)

An instance of an artifact is considered conformant when all of the requirements associated
with it are met.

2.2 Conformance of Services and Consumers

A deployed instance of a Web service (as specified by wsdl:port or uddi:bindingTemplate) is
considered conformant if it produces only conformant artifacts, and is capable of consuming
conformant artifacts, as appropriate. Note that this means that where multiple conformant
artifacts are possible, a conformant service must be able to consume them all (e.g., while a
sender might choose whether to encode XML in UTF-8 or UTF-16 when sending a message,
a receiver must be capable of using either).

Conformant Web service instances must comply with all requirement statements associated
with INSTANCE.

Similarly, a consumer of a service instance is considered conformant if it produces only
conformant artifacts and is capable of consuming conformant artifacts, as appropriate.

Conformant consumers must comply with all requirements statements associated with
CONSUMER.

Both conformant Web service instances and consumers must comply, as appropriate, with
all of the requirement statements associated with:

• SENDER - software that generates a message according to the protocol(s)
associated with it.

• RECEIVER - software that consumes a message according to the protocol(s)
associated with it (e.g., SOAP processors)

Note that conformance does not apply to wsdl:service elements; only wsdl:port elements are
considered when determining conformance of instances. Therefore, the profile places no
constraints on wsdl:service definitions. In particular, they can have more multiple ports, each
of which may or may not be conformant.

Types of Web services (as specified by wsdl:binding and wsdl:portType) are considered
conformant if, when deployed with due consideration, they produce conformant instances.

Additionally, an instance of a Web service is required to make the contract that it operates
under available in some fashion.

R0001 An INSTANCE MUST be described by a WSDL 1.1 service
description, by a UDDI binding template, or both.

"described," in this context, means that if an authorized consumer requests a service
description of a conformant service instance, then the service instance provider must make
the WSDL document, the UDDI binding template, or both available to that consumer. A
service instance may provide run-time access to WSDL documents from a server, but is not
required to do so in order to be considered conformant. Similarly, a service instance provider
may register the instance provider in a UDDI registry, but is not required to do so to be
considered conformant. In all of these scenarios, the WSDL contract must exist, but might
be made available through a variety of mechanisms, depending on the circumstances.

2.3 Conformance Annotation

To allow services to advertise conformance to the Profile, conformance claims regarding
instances can be placed at the appropriate place in a service's WSDL description. Claims
can be associated with a particular element (e.g., portType) to scope them to that construct.

R0002 DESCRIPTIONs MAY contain conformance claims regarding
instances, as specified in the conformance claim schema.

R0003 DESCRIPTIONs' conformance claims MUST be children of the
documentation element of each of the wsdl elements: port, binding,
portType, operation and message.

A conformance claim on an element means that the element (and the instance it represents,
in the case of a port) is conformant to the profile it claims to obey (as relevant to the type of
element).
A conformance claim on an element also implies that the same claim is made for all the
elements that it uses, based on the following transitivity rules, applied recursively:

• A claim on a port is inherited by the referenced binding
• A claim on a binding is inherited by the referenced portType
• A claim on a portType is inherited by the referenced operations
• A claim on an operation is inherited by the referenced messages

The conformance claim schema is:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://ws-i.org/schemas/conformanceClaim/"

 xmlns:tns="http://ws-i.org/schemas/conformanceClaim/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified" >

 <xs:element name="Claim" >

 <xs:complexType>

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax"/>

 </xs:sequence>

 <xs:attribute name="conformsTo" type="xs:anyURI"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

For example,
CORRECT:

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"

 xmlns:tns="http://example.org/myservice"

 targetNamespace="http://example.org/myservice">

 <wsdl:portType name="MyPortType">

 ...

 </wsdl:portType>

 <wsdl:binding name="MyBinding" portType="MyPortType">

 ...

 </wsdl:binding>

 <wsdl:service name="MyService">

 <wsdl:port name="MyPort" binding="tns:MyBinding">

 <wsdl:documentation>

 <wsi:Claim conformsTo="http://ws-
i.org/profiles/basic1.0/"/>

 </wsdl:documentation>

 <soap:address
location="http://example.org/myservice/myport"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Editors' note:The editors have an outstanding action item to obtain a URI for use in
conjunction with conformance claims.

3. Messaging
This portion of the profile incorporates the following specifications by reference;

• Simple Object Access Protocol (SOAP) 1.1 .
• Extensible Markup Language (XML) 1.0 (Second Edition).
• RFC2616: Hypertext Transfer Protocol -- HTTP/1.1.
• RFC2965: HTTP State Management Mechanism.

3.1 XML Representation of SOAP Messages

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• SOAP 1.1, Section 4.

SOAP 1.1 defines an XML-based structure for transmitting messages. This profile mandates
the use of that structure, and places the following constraints on its use:

The XML specification allows UTF-8 encoding to include a BOM; therefore, receivers of
messages must be prepared to accept them. The BOM is mandatory for XML encoded as
UTF-16.

R4001 A RECEIVER MUST accept messages that include the Unicode Byte
Order Mark (BOM).C

For interoperability the content of the soap:Fault element is restricted to those elements
explicitly described in the SOAP 1.1 specification.

R1000 When a MESSAGE contains a soap:Fault element, that element
MUST NOT have element children other than faultcode,
faultstring, faultactor and detail.

For example,
INCORRECT:

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <faultcode>soap:Client</faultcode>

 <faultstring>Invalid message format</faultstring>

 <faultactor>http://example.org/someactor</faultactor>

 <detail>There were lots of elements in the message

 that I did not understand

 </detail>

 <m:Exception xmlns:m='http://example.org/faults/exceptions' >

 <m:ExceptionType>Severe</m:ExceptionType>

 </m:Exception>

</soap:Fault>

CORRECT:

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <faultcode>soap:Client</faultcode>

 <faultstring>Invalid message format</faultstring>

 <faultactor>http://example.org/someactor</faultactor>

 <detail>There were lots of elements in the message

 that I did not understand

 </detail>

</soap:Fault>

The children of the soap:Fault element are local to that element and do not need to be
namespace qualified.

R1001 When a MESSAGE contains a soap:Fault element its element
children MUST be unqualified.

For example,
INCORRECT:

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <soap:faultcode>soap:Client</soap:faultcode>

 <soap:faultstring>Invalid message format</soap:faultstring>

 <soap:faultactor>http://example.org/someactor</soap:faultactor>

 <soap:detail>There were lots of elements in the message

 that I did not understand

 </soap:detail>

</soap:Fault>

CORRECT:

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 xmlns='' >

 <faultcode>soap:Client</faultcode>

 <faultstring>Invalid message format</faultstring>

 <faultactor>http://example.org/someactor</faultactor>

 <detail>There were lots of elements in the message

 that I did not understand

 </detail>

</soap:Fault>

For extensibility, additional attributes are allowed to appear on the detail element and
additional elements are allowed to appear as children of the detail element .

R1002 A RECEIVER MUST accept fault messages that have any number of
elements, including zero, appearing as children of the detail
element. Such children can be qualified or unqualified.

R1003 A RECEIVER MUST accept fault messages that have any number of
qualified attributes, including zero, appearing on the detail
element. The namespace of such attributes can be anything other
than "http://schemas.xmlsoap.org/soap/envelope/".

To help internationalization the language of faultstrings may be indicated.

R1016 A RECEIVER MUST accept fault messages that carry an xml:lang
attribute on the faultstring element.

Custom fault codes must not appear inside the faultcode element; for interoperability, a
fixed set of fault codes is needed.

R1004 When a MESSAGE contains a faultcode element the content of that
element MUST be one of the fault codes defined in the SOAP 1.1
specification.

For example,
INCORRECT:

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 xmlns:c='http://example.org/faultcodes' >

 <faultcode>c:ProcessingError</faultcode>

 <faultstring>An error occurred while processing the message

 </faultstring>

</soap:Fault>

CORRECT:

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <faultcode>soap:Server</faultcode>

 <faultstring>An error occurred while processing the message

 </faultstring>

</soap:Fault>

For interoperability, literal XML is preferred.

R1005 A MESSAGE MUST NOT contain soap:encodingStyle attributes on
any of the elements whose [namespace name] is
"http://schemas.xmlsoap.org/soap/envelope/".

R1006 A MESSAGE MUST NOT contain soap:encodingStyle attributes on
any element which is a child of soap:Body.

R1007 A MESSAGE MUST NOT contain soap:encodingStyle attributes on
any elements which are grandchildren of soap:Body.

For interoperability, security and ease of processing these XML constructs are disallowed.
R1008 A MESSAGE MUST NOT contain a Document Type Declaration. C
R1009 A MESSAGE MUST NOT contain Processing Instructions. C

Presence or absence of such a declaration does not affect interoperability. Certain
implementations might always precede their XML serialization with the XML declaration.

R1010 A RECEVIER MUST accept messages that contain an XML
Declaration. C

This requirement clarifies a mismatch between the SOAP 1.1 specification and the
associated XML Schema document

R1011 A MESSAGE MUST NOT have any element children of
soap:Envelope following the soap:Body element.

For example,
INCORRECT:

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <soap:Body>

 <p:Process xmlns:p='http://example.org/Operations' />

 </soap:Body>

 <m:Data xmlns:m='http://example.org/information' >

 Here is some data with the message

 </m:Data>

</soap:Envelope>

CORRECT:

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <soap:Body>

 <p:Process xmlns:p='http://example.org/Operations' >

 <m:Data xmlns:m='http://example.org/information' >

 Here is some data with the message

 </m:Data>

 </p:Process>

 </soap:Body>

</soap:Envelope>

All XML Processors must support UTF-8 and UTF-16, per the XML 1.0 specification so
requiring these encodings places no burden on implementations and aids interoperability.

R1012 A MESSAGE MUST be serialized as either UTF-8 or UTF-16.

The soap:mustUnderstand attribute has a type of xsd:boolean which allows all four lexical
forms but for compatibility only two are allowed.

R1013 MESSAGEs containing a soap:mustUnderstand attribute MUST only
use the lexical forms 0 and 1. C

The interpretation of unqualified element names is ambiguous, therefore qualified names
must be used.

R1014 The children of the soap:Body element in a MESSAGE MUST be
namespace qualified.

SOAP 1.1 only stated that the message be discarded in such cases. For interoperability
faults must be generated instead.

R1015 A RECEIVER MUST generate a fault if they encounter a message
whose document element has a local name of "Envelope" but a
namespace name which is not
"http://schemas.xmlsoap.org/soap/envelope/".

In many cases senders and receivers will share some form of type information related to the
messages being exchanged. xsi:type is only needed where no such schema exists, that is
where both sides are assuming that all exchanged items are xs:anyType.

R1017 A RECEIVER MUST NOT mandate the use of the xsi:type attribute
in messages except as required in order to indicate a derived type
(see XML Schema Part 1: Structures, Section 2.6.1).

3.2 The SOAP Processing Model

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• SOAP 1.1, Section 2.

SOAP 1.1 defines a message exchange model for processing of messages. This profile
places the following constraints on that model:

This guarantees that no undesirable side-effects will occur as a result of noticing a
mandatory header AFTER processing other parts of the message.

R1025 A RECEIVER MUST handle messages in such a way that it appears
that all checking of mandatory headers is performed before any
actual processing. SOAP12

soap:actor is used to target header blocks at intermediaries. The SOAP specification has
nothing to say about its value.

R1026 The value of the soap:actor attribute in a MESSAGE is a private
agreement between the sender and the receiver of the header
carrying the attribute. C

Editors' note:This statement isn't really a requirement; it might become a Best
Practice.

Requiring that receivers generate faults ensures that mandatory headers are not silently and
erroneously ignored.

R1027 A RECEIVER MUST generate a soap:MustUnderstand fault when a
message contains a mandatory header targeted at the receiver
(via soap:actor) that the receiver does not understand. A
mandatory header is one which carries a soap:mustUnderstand
attribute with the value 1.

These requirements ensure that, when a Fault is generated, no further processing will be
done on the message, a Fault message will be transmitted to the sender of the request
message in request-response cases and some application level error will be flagged to the
user.

R1028 Upon generating a SOAP Fault a RECEIVER MUST NOT effect any
further processing of a SOAP message beyond that which is
necessary to handle the generated SOAP Fault.

R1029 Where the normal outcome of processing a SOAP message would
have resulted in the transmission of a SOAP response, but rather a
SOAP Fault is generated instead, a RECEIVER MUST transmit a
SOAP Fault message in place of the response.

R1030 A RECEIVER that generates a SOAP Fault SHOULD notify the end
user that a SOAP Fault has been generated when practical, by
whatever means is deemed appropriate to the circumstance.

3.3 Using SOAP in HTTP

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• SOAP 1.1, Section 6.
• HTTP/1.1.
• HTTP State Management Mechanism.

SOAP 1.1 defines a single protocol binding, for HTTP. This profile mandates the use of that
binding, and places the following constraints on its use:

HTTP/1.1 has several performance advantages and is more clearly specified, in comparison
to HTTP/1.0. Note that support for HTTP/1.0 is implied in HTTP/1.1, and that intermediaries
may change the version of a message; for more information about HTTP versioning, see
RFC2145.

R1140 A MESSAGE SHOULD be sent using HTTP/1.1.

Some consumer implementations use only the HTTP status code to determine the presence
of a SOAP Fault. Because there are situations where the Web infrastructure changes the
HTTP status code, and for general reliability, the Profile requires that they examine the
envelope.

R1107 A RECEIVER MUST interpret SOAP messages containing only a
soap:Fault element as a Fault.

The HTTP Extension Framework is an experimental mechanism for extending HTTP in a
modular fashion. Because it is not deployed widely and also because the benefits to the use
of SOAP are questionable, the Profile does not allow its use.

R1108 A MESSAGE MUST NOT use the HTTP Extension Framework
[RFC2774].

Interoperability testing has demonstrated that requiring the value of the SOAPAction HTTP
Header Field to be quoted increases interoperability of implementations. Even though HTTP
allows for the value of HTTP Header Fields to be unquoted, some implementations require
that the value be quoted.
The SOAPAction header is purely a hint to processors. All vital information regarding the
intent of a message is carried in the Envelope.

R1109 The value of the SOAPAction HTTP header field in a MESSAGE
MUST be a quoted string. C

R1117 A MESSAGE MUST contain a SOAPAction HTTP header field with a
quoted value equal to the value of the
soapbind:operation/@soapAction attribute, if present in the
DESCRIPTION. C

R1118 A MESSAGE MUST contain a SOAPAction HTTP Header Field with a
quoted empty string if the soapbind:operation/@soapAction
attribute is either not present in the DESCRIPTION, or is present
and contains an empty string as its value. C

R1119 A RECEIVER MAY respond with a Fault if the value of the
SOAPAction HTTP Header Field is not quoted. C

For example,
CORRECT:

A WSDL Description that has:

<soapbind:operation soapAction="foo" />

results in a message with a corresponding SOAPAction HTTP header field

as follows:

SOAPAction: "foo"

CORRECT:

A WSDL Description that has:

<soapbind:operation />

or

<soapbind:operation soapAction="" />

results in a message with a corresponding SOAPAction HTTP header field

as follows:

SOAPAction: ""

SOAP is designed to take advantage of the HTTP infrastructure. However, there are some
situations (e.g., involving proxies, firewalls and other intermediaries) where there may be
harmful side effects. As a result, instances may find it advisable use other ports.

R1110 An INSTANCE MAY use TCP port 80 (HTTP). C

HTTP uses the 2xx series of status codes to communicate success. In particular, 200 is the
default for successful messages, but 202 can be used to indicate that a messages has been

submitted for processing. Additionally, other 2xx status codes may be appropriate,
depending on the nature of the HTTP interaction.

R1124 An INSTANCE MUST use a 2xx HTTP status code for responses
that indicate a successful outcome of a request.

R1111 An INSTANCE SHOULD use a "200 OK" HTTP status code for
responses that contain a SOAP message that is not a SOAP fault.

R1112 An INSTANCE SHOULD use either a "200 OK" or "202 Accepted"
HTTP status code for responses that indicate successful HTTP
outcome of a request but do not contain a SOAP message.

There are interoperability problems with using many of the HTTP redirect status codes,
generally surrounding whether to use the original method, or GET. The profile mandates
"307 Temporary Redirect" as the correct status code for redirection; for more information,
see the 3xx status code descriptions in RFC2616.

R1130 An INSTANCE MUST use HTTP status code "307 Temporary
Redirect" when redirecting a request to a different endpoint.

R1131 A CONSUMER MAY automatically redirect a request when it
encounters a "307 Temporary Redirect" HTTP status code in a
response.

RFC2616 notes that user-agents should not automatically redirect requests; however, this
requirement was aimed at browsers, not automated processes (which many Web services
will be). Therefore, the Profile allows, but does not require, consumers to come to be
configured to automatically follow redirections.

HTTP uses the 4xx series of status codes to indicate failure due to a client error. Although
there are a number of situations which may result in one of these codes, the profile
highlights those when the payload of the HTTP request is not the proper media type, and
when the anticipated method is not used.

R1125 An INSTANCE MUST use a 4xx HTTP status code for responses
that indicate a problem with the format of the request.

R1113 An INSTANCE SHOULD use a "400 Bad Request" HTTP status code
if the request message is invalid (HTTP request malformed, XML
not well formed, ...).

R1114 An INSTANCE SHOULD use a "405 Method not Allowed" HTTP
status code if the request method was not "POST".

R1115 An INSTANCE SHOULD use a "415 Unsupported Media Type" HTTP
status code if the Content-Type HTTP request header did not have
a value of "text/xml".

HTTP uses the 5xx series of status codes to indicate failure due to a server error.

R1116 An INSTANCE MUST use a 5xx HTTP status code for responses
that indicate an unsuccessful outcome of a well formed request.

R1126 An INSTANCE MUST use a "500 Internal Server Error" HTTP status
code if the response message contains a SOAP Fault.

The HTTP State Management Mechanism, or "Cookies", allows the creation of stateful
sessions between Web browsers and servers. Being designed for hypertext browsing,
Cookies do not have well-defined semantics for Web services, and, because they are
external to the SOAP Envelope, are not accommodated by either the SOAP or WSDL
specifications. However, there are situations where it may be necessary to use Cookies; e.g.,
for load balancing between servers, or for integration with legacy systems that use Cookies.
For these reasons, the profile limits the ways in which Cookies can be used, without
completely disallowing them.

R1120 An INSTANCE MAY use the HTTP state mechanism ("Cookies").
R1122 An INSTANCE using Cookies SHOULD conform to RFC2965.
R1121 An INSTANCE SHOULD NOT require consumer support for Cookies

in order to function correctly.
R1123 The value of the cookie MUST be considered to be opaque by the

CONSUMER.
The Profile recommends that cookies not be required by instances for proper operation; they
should be a hint, to be used for optimization, without materially affecting the execution of the
Web service. However, they may be required in legacy integration and other exceptional use
cases, so requiring them does not make an instance non-conformant. While Cookies thus
may have meaning to the instance, they should not be used as an out-of-bound data
channel between the instance and the consumer. Therefore, interpretation of Cookies is not
allowed at all on the consumer side - it is required to treat them as opaque (i.e., have no
meaning to the consumer).

4. Service Description
The profile uses Web Services Description Language (WSDL) to enable the description of
services as a set of endpoints operating on messages.

This portion of the profile incorporates the following specifications by reference;

• Web Services Description Language (WSDL) 1.1.
• XML Schema Part 1: Structures.
• XML Schema Part 2: Datatypes.

4.1 Document Structure

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.1.

WSDL 1.1 defines an XML-based structure for describing Web services. This profile
mandates the use of that structure, and places the following constraints on its use:

Some of the examples in WSDL 1.1 specification incorrectly show WSDL import statement
being used to import XML Schema definitions. To promote interoperability the profile keeps
the import mechanisms consistent and confined to their respective domains; the wsdl related
mechanism in the "wsdl" domain and the schema related mechanisms in "schema" domain
where the normal rules from the schema specification can be applied consistently.

R2001 A DESCRIPTION MUST only use the WSDL "import" statement to
import another WSDL description.

R2002 To import XML Schema Definitions, a DESCRIPTION MUST use the
XML Schema "import" statement.

R2003 A DESCRIPTION MUST only use the XML Schema "import"
statement within the xsd:schema element of the types section.

R2004 A DESCRIPTION MUST NOT use the XML Schema "import"
statement to import a Schema definition embedded in line within
another WSDL description.

For example,
INCORRECT:

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote/definitions"

 xmlns:xsd1="http://example.com/stockquote.xsd"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/schemas"

 location="http://example.com/stockquote/stockquote.xsd"/>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 ...

</definitions>

CORRECT:

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote/definitions"

 xmlns:xsd1="http://example.com/stockquote/schemas"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <xsd:schema
targetNamespace="http://example.com/stockquote/definitions"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://example.com/stockquote/schemas"

 schemaLocation="http://example.com/stockquote/stockquote.xsd"/>

 ...

 ...

 </xsd:schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 ...

</definitions>

CORRECT:

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote/definitions"

 xmlns:xsd1="http://example.com/stockquote/schemas"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"

 location="http://example.com/stockquote/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 ...

</definitions>

The XML specification allows UTF-8 encoding to include a BOM; therefore, description
processors must be prepared to accept them.

R4002 DESCRIPTIONs MAY include the Unicode Byte Order Mark (BOM)

The profile consistently requires either UTF-8 or UTF-16 encoding for both SOAP and
WSDL. See also R1012.

R4003 DESCRIPTIONs MUST use either UTF-8 or UTF-16 encoding.

Namespace coercion on wsdl:import is disallowed by the Basic Profile, as it has been found
to be undesirable from interoperability perspective.

R2005 The targetNamespace attribute on the wsdl:definitions element of a
description that is being imported MUST have same the value as
the namespace attribute on the wsdl:import element in the importing
DESCRIPTION.

Eliminate confusion about whether the location attribute of the wsdl:import statement is
required and what its content is required to be.

R2007 A DESCRIPTION MUST specify a valid and non-null value for the
location attribute on the wsdl:import element.

Although the wsdl:import statement is modeled after the xsd:import statement, the location
attribute is required by wsdl:import while the corresponding attribute on xsd:import,
schemaLocation is optional. Consistent with location being required, its content is not
intended to be empty.

A WSDL processor may not need to retrieve a WSDL description from the URI specified in
the location attribute on a wsdl:import element. A WSDL processor may have other ways of
locating a WSDL description for a given namespace, including but not limited to; already
having a cached representation, having a built-in representation, retrieving a representation
from a metadata repository or UDDI server.

R2008 In a DESCRIPTION the value of the location attribute of a
wsdl:import element SHOULD be treated as a hint. C

Eliminate inconsistency between WSDL 1.1 schema and the WSDL 1.1 specification in this
area.

R2020 The wsdl:documentation element MAY occur as a child of the
wsdl:import element in a DESCRIPTION. WSDL12

R2021 The wsdl:documentation element MAY occur as a child of the
wsdl:part element in a DESCRIPTION. WSDL12

R2024 The wsdl:documentation element MAY occur as a first child of the
wsdl:definitions element in a DESCRIPTION. WSDL12

Eliminate confusion created by example 3 in section 3.1 of the WSDL 1.1 specification and
also align with the W3C WSDL WG resolution on this.

R2022 In a DESCRIPTION the wsdl:import element(s), when present,
MUST occur either prior to any other child elements under the
wsdl:definitions element, if no wsdl:documentation element is
present; or immediately following the wsdl:documentation element
if present. WSDL12

R2023 In a DESCRIPTION the wsdl:types element MUST occur either as
the first child of the wsdl:definitions element if no
wsdl:documentation or wsdl:import elements are present; or
immediately following the wsdl:documentation and/or wsdl:import
elements if present. WSDL12

For example,
INCORRECT:

<definitions name="StockQuote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"

 location="http://example.com/stockquote/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">

 <part name="body" type="tns:TradePriceRequest"/>

 </message>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 </port>

 </service>

 <types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>

 </types>

</definitions>

CORRECT:

<definitions name="StockQuote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"

 location="http://example.com/stockquote/stockquote.wsdl"/>

 <types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="tns:TradePriceRequest"/>

 </message>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 </port>

 </service>

</definitions>

CORRECT:

<definitions name="StockQuote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="tns:TradePriceRequest"/>

 </message>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 </port>

 </service>

</definitions>

4.2 Types

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.2.

The wsdl:types element of WSDL 1.1 encloses data type definitions that are relevant to the
Web service described. This profile places the following constraints pertinent to those
portions of the content of the wsdl:types element that are referred to by WSDL elements
that make profile conformance claims:

The WSDL specification is not explicit that WSDL documents may only refer, using a
QName, to a name that is in a namespace that has either been imported or defined in the
referring document.

R2101 A DESCRIPTION MUST NOT use QName references to elements in
namespaces that have been neither imported, nor defined in the
referring WSDL document.

Requiring a targetNamespace on all xsd:schema elements that are children of wsdl:types is
a good practice, places a minimal burden on authors of WSDL documents, and avoids the
cases that are not as clearly defined as they might be.

R2105 All xsd:schema elements contained in a wsdl:types element of a
DESCRIPTION MUST have a targetNamespace attribute with a
valid and non-null value.

The recommendations in section 2.2 of the WSDL 1.1 specification for declaration of Array
types are prohibited by the Basic Profile, as they are based on SOAP 1.1 encoding scheme.

R2110 In a DESCRIPTION array declarations MUST NOT extend the
soapenc:Array type.

R2111 In a DESCRIPTION array declarations MUST NOT use
wsdl:arrayType attribute in the type declaration.

R2112 In a DESCRIPTION array declaration wrapper elements SHOULD
NOT be named using the convention ArrayOfXXX.

R2113 MESSAGEs with serialized form of arrays MUST NOT include the
soapenc:arrayType attribute.

For example,
INCORRECT:

<xsd:element name="MyArray2" type="tns:MyArray2Type"/>

<xsd:complexType name="MyArray2Type"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" >

 <xsd:complexContent>

 <xsd:restriction base="soapenc:Array">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:string" minOccurs=0
maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute ref="soapenc:arrayType"
wsdl:arrayType="tns:MyArray2Type[]"/>

 </xsd:restriction>

 </xsd:complexContent>

</xsd:complexType>

In a SOAP message this would serialize as below (omitting namespace
declarations for clarity):

<MyArray2 soapenc:arrayType="tns:MyArray2Type[]" >

 <x>abcd</x>

 <x>efgh</x>

</MyArray2>

CORRECT:

<xsd:element name="MyArray1" type="tns:MyArray1Type"/>

<xsd:complexType name="MyArray1Type">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:string" minOccurs=0
maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

In a SOAP message this would serialize as below (omitting namespace
declarations for clarity):

<MyArray1>

 <x>abcd</x>

 <x>efgh</x>

</MyArray1>

4.3 Messages

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.3.

In WSDL 1.1 message elements are used to represent abstract definitions of the data being
transmitted and binding elements to define how the abstract definitions are bound to a
specific wire format.

In discussing this the following definitions are useful.

An "rpc-literal binding" is a wsdl:binding that contains a soapbind:binding element whose
style attribute has the value "rpc" and all of whose soapbind:body elements specify the
use="literal" attribute.

A "document-literal binding" is a wsdl:binding that contains a soapbind:binding element
whose style attribute is either omitted or specified with a value of "document" and all of
whose soapbind:body elements specify the use="literal" attribute.

This profile places the following constraints message elements and on how conformant
binding elements may use message element(s).

Use of wsdl:message elements with zero parts is permitted in Document styles to permit
operations that can send or receive MESSAGEs with empty SOAP Bodies. Use of
wsdl:message elements with zero parts is permitted in RPC styles to permit operations that
have no (zero) parameters and/or return value. This case is explicitly permitted by the Basic
Profile.
For Document-literal binding, the Basic Profile requires that at most one wsdl:part is
marshaled in SOAP Body, which needs to be defined via the element form at the abstract
level.

R2201 A document-literal binding in a DESCRIPTION MUST, in each of its
soapbind:body element(s), have at most one part listed in the parts
attribute, if the parts attribute is specified.

R2210 If a document-literal binding in a DESCRIPTION does not specify the
parts attribute on a soapbind:body element, the corresponding
abstract wsdl:message MUST define a single wsdl:part.

R2202 A wsdl:binding in a DESCRIPTION MAY contain soapbind:body
element(s) that specify that zero parts form the soap:body.

R2203 An rpc-literal binding in a DESCRIPTION MUST refer, in its
soapbind:body element(s), only to wsdl:part element(s) that have
been defined using the type attribute.

R2207 A wsdl:message in a DESCRIPTION MAY contain wsdl:parts that
use the elements attribute provided those wsdl:parts are not
referred to by a soapbind:body in an rpc-literal binding.

R2204 A document-literal binding in a DESCRIPTION MUST refer, in each
of its soapbind:body element(s), only to wsdl:part element(s) that
have been defined using the element attribute.

R2208 A document-literal binding in a DESCRIPTION MAY contain
soapbind:header element(s) that refer to wsdl:parts in the same
wsdl:message that are referred to by its soapbind:body element(s).

soapbind:fault, soapbind:header and soapbind:headerfault assume that style="document",
since faults and headers do not contain parameters. This requirement is consistent with
R2204, which requires that all parts in style="document" that are bound to soapbind:body be
defined using the element attribute.

R2205 A wsdl:binding in a DESCRIPTION MUST refer, in each of its
soapbind:header, soapbind:headerfault and soapbind:fault
elements, only to wsdl:part element(s) that have been defined
using the element attribute.

A portType defines an abstract contract with a named set of operations and associated
abstract messages. Although not disallowed, it is expected that every part of the abstract
input, output and fault message specified in the portType is bound to soapbind:body or
soapbind:header etc. as appropriate when using SOAP binding as defined in WSDL 1.1
section 3.

R2209 A wsdl:binding in a DESCRIPTION SHOULD bind every part of a
wsdl:message in the wsdl:portType to which it refers to one of
soapbind:body, soapbind:header, soapbind:fault or
soapbind:headerfault.

The examples 4, 5 in section 3.1 of the WSDL 1.1 specification incorrectly show the use of
Schema types (e.g. xsd:string) as a valid value for the element attribute of a wsdl:part
element.

R2206 A wsdl:message in a DESCRIPTION containing a wsdl:part that uses
the element attribute MUST refer, in that attribute, to a global
element declaration.

For example,
INCORRECT:

 <message name="GetTradePriceInput">

 <part name="tickerSymbol" element="xsd:string"/>

 <part name="time" element="xsd:timeInstant"/>

 </message>

 <message name="GetTradePricesInput">

 <part name="tickerSymbol" element="xsd:string"/>

 </message>

CORRECT:

 <message name="GetTradePriceInput">

 <part name="body" element="tns:SubscribeToQuotes"/>

 </message>

4.4 Port Types

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.4.

In WSDL 1.1, portType elements are used to group a set of abstract operations. This profile
places the following constraints on the use of portType element(s):

Permitting the use of parameterOrder helps code generators in mapping between method
signatures and on the wire MESSAGE instances.

R2301 The order of the parts in a message in the DESCRIPTION MUST be
the definitive order of the part elements on the wire for any part in
an operation.

R2302 A DESCRIPTION MAY use the parameterOrder attribute of an
wsdl:operation element to indicate the return value and method
signatures as a hint to code generators.

Solicit-Response and Notification are not well defined by the WSDL 1.1 specification and the
WSDL 1.1 specification defines bindings for the One-way and Request-response primitives
only.

R2303 A DESCRIPTION MUST NOT use Solicit-Response and Notification
type operations in a wsdl:portType definition.

To promote interoperability operation name overloading in a portType is disallowed by the
Basic Profile. Note however that a portType may name operations same as the ones in
another portType.

R2304 A wsdl:portType in a DESCRIPTION MUST have operations with
distinct values for their name attributes.

WSDL representation of an RPC function can have 0 or 1 return value while the return value
can be an instance of a complex type. The parameterOrder definition where provided, must
be consistent with this as well.

R2305 A wsdl:portType in a DESCRIPTION MUST be constructed so that
the parameterOrder attribute, if present, omits at most 1 part from
the output message.

If a part from the output message is omitted from the list of parts that is the value of the
parameterOrder attribute, the single omitted part is the return value. There are no restrictions
on the type of the return value. If no part is omitted, there is no return value.

WSDL 1.1 specification does not clearly state that both type and element attributes can not
be specified to define a part in a wsdl:message. This loop-hole needs to be closed.

R2306 A wsdl:portType in a DESCRIPTION MUST NOT refer to
wsdl:messages that define wsdl:parts that specify both type and
element attributes on the same wsdl:part.

4.5 Bindings

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.5.

In WSDL 1.1 the binding element supplies the concrete protocol and data format
specifications for the operations and messages defined by a particular portType. This profile
places the following constraints on the binding specifications:

For interoperability the choice of bindings is limited to the well defined and most commonly
used SOAP Binding. MIME, HTTP GET/POST bindings are not permitted by the Basic
Profile.

R2401 A wsdl:binding in a DESCRIPTION MUST use WSDL SOAP
Binding as defined in section "3 SOAP Binding" of the WSDL 1.1
specification.

4.6 Ports

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.6.

In WSDL 1.1 the port element specifies an address for binding on a portType, thus defining
a communication end-point for the Web service. This profile places the following constraints
on the use of the port element:

Editors' note:The Working Group has not closed any issues relating to Ports as of
publication.

4.7 Services

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 2.7.

In WSDL 1.1 the service element is used to aggregate a set of related ports. This profile
places the following constraints on the use of the service element:

Editors' note:The Working Group has not closed any issues relating to Services as of
publication.

4.8 SOAP Binding

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• WSDL 1.1, Section 3.0.

WSDL 1.1 defines a binding for SOAP 1.1 endpoints. This profile mandates the use of
SOAP binding as defined in the WSDL 1.1 specification, and places the following constraints
on its use:

SOAP 1.2 specification differs from the SOAP 1.1 specification in many respects. For
interoperability the profile limits the SOAP binding to the SOAP 1.1 protocol.

R2700 A wsdl:binding DESCRIPTION MUST use SOAP 1.1 protocol with
SOAP Binding.

Eliminate inconsistency between the WSDL 1.1 specification text and the WSDL 1.1 schema.
The WSDL 1.1 specification shows it to be required but, the schema shows this attribute to
be optional, where as the Basic profile sees this to be a required attribute.

R2701 A wsdl:binding in a DESCRIPTION MUST be constructed so that its
soapbind:binding child specifies the transport attribute.

For interoperability the transport protocol is limited to HTTP. To permit secure transfers at
the HTTP level use of HTTP(S) is allowed.

R2702 A wsdl:binding in a DESCRIPTION MUST specify the HTTP
transport protocol with SOAP binding. Specifically, the transport
attribute of is soapbind:binding child MUST have the value
"http://schemas.xmlsoap.org/soap/http".

Disallow mix and match of operation "style" in the same binding.

R2705 A wsdl:binding in a DESCRIPTION MUST use the same value,
either "rpc" or "document," for the style attribute for all of its
soapbind:operations.

For interoperability the profile prohibits the use of different encodings including the SOAP
encoding.

R2706 A wsdl:binding in a DESCRIPTION MUST use the value of "literal"
for the use attribute in all soapbind:body , soapbind:header, and
soapbind:headerfault elements.

Eliminate the ambiguity between the WDSL specification text and the Schema given in
Appendix A4 about whether the use attribute is optional on soapbind:body, soapbind:header,
and soapbind:headerfault, and if so, what omitting the attribute means.

R2707 A wsdl:binding in a DESCRIPTION that contains one or more
soapbind:body, soapbind:header, or soapbind:headerfault
elements that do not specify the use attribute MUST be interpreted
as though the value "literal" had been specified in each case.

Explicitly permit multiple bindings for the same portType, to alleviate any ambiguity in this
area.

R2709 A wsdlportType in a DESCRIPTION MAY have any number of
wsdl:bindings that refer to it defined in the same or other WSDL
documents.

An endpoint that supports multiple operations has to identify unambiguously the operation
being invoked based on the input message that it receives. This is only possible if all the
operations specified in the wsdl:binding associated with an endpoint have a unique wire
signature.

R2710 The Basic Profile defines the "wire signature" of an operation in a
wsdl:binding to be the fully qualified name of the child element of
the soap:Body of the SOAP input message it describes. For the
case of an empty soap:Body this name is an empty string. The
operations in a wsdl:binding in a DESCRIPTION MUST result in
wire signatures that are different from one another.

In the case of RPC/literal binding, the operation name is used as wrapper for the part
accessors. However in the doc (literal) SOAP binding case since a wrapper with the
operation name is not present, there might be an ambiguity as to which operation is invoked,
if there are more than one operation in a port which is bound with doc/literal style. Hence the
server needs to ensure it can distinguish the operation based on, on the wire SOAP
message for the operation.

It is perceivable and it has also been demonstarted in the field that multiple Web services
are hosted at the same network end-point by some implementations.

R2711 A DESCRIPTION MAY have more than one port with the same
value for the location attribute of the soapbind:address element.

While it is not a conformance issue to have multiple wsdl:ports at the same network
address, when the input messages destined for two different wsdl:ports are
indistinguishable on the wire, the endpoint will not be able to determine the wsdl:port being
invoked and this may result in implementation problems.

R2712 When a Doc/literal binding is in use, the wire representation of a
MESSAGE MUST be an instance of the global element declaration
referenced by the corresponding wsdl:message part.

Disambiguate the meaning of missing SOAPAction attribute specification in a WSDL
description.

R2713 If the value of the soapAction attribute on the soapbind:operation
element is empty (as indicated by two quotes), the DESCRIPTION
MUST be treated equivalent to the one that does not specify the
soapAction attribute.

HTTP being a request/response protocole, the profile needs to clarify what the expected
behavior is in the case of a one-way message being exchanged.
Any SOAP content sent in reponse to a one-way operation would constitute a response
message. Transmission of one-way operations MUST not result in processing level
response or errors. It is therefore fobidden by the profile to send a SOAP envelop in reply to

a one-way document. Hence a HTTP 500 "Internal Server Error" response that includes a
SOAP message in the response containing a SOAP Fault element MUST NOT be returned.
There is no way at the HTTP level for the initiator of a request to know that the request was
succesfully received until an HTTP response code is sent back. Based on the scemantics of
the different response codes supported by the HTTP protocol, the profile specify that
response codes 200 and 202 are the only response codes that the sender should interprete
to signify that the message was succesfully delivered.

R2714 For one-way operations, INSTANCEs MUST NOT return a HTTP
response that contains a SOAP envelope. Specifically, the HTTP
entity-body of the response MUST be empty.

R2715 INSTANCEs MUST NOT consider transmission of one-way
operations complete until a HTTP response code of either "200 OK"
or "202 accepted" is received by the HTTP client.

R2727 For one-way operations, INSTANCEs MUST NOT interpret the HTTP
response code of 200 or 202 to mean the message is valid or that
the receiver would process it.

Despite the fact that the HTTP 1.1 specification assigns different meanings to responce
codes 200 and 202, in the context of the basic profile there should be considered the same
by the initiator of the request. This is due to the fact that some SOAP implementations have
little control over the HTTP layer they depend on and might not be able to control the HTTP
response code sent and when it is sent. As a result, the initiator of a one-way message
should only interpret a 200 or 202 response code to mean that the message was succesfully
received at the transport level but not that the SOAP processing layer and the application
logic had a chance to validate the message or are commiting to processing it.

In a document/literal SOAP binding, the serialized element child of the SOAP:Body gets its
namespace from the targetNamespace of the schema that defines the element. Use of the
soapbind:body/@namespace attribute would override the element's namespace, which is
prevented by the Basic Profile.
Conversely, in a rpc/literal SOAP binding, the serialized element child of the SOAP:Body is
generated by wrapping the xsd Types referenced in the wsdl:part/@type attributes of the
wsdl:message, into an element whose name is constructed from the value of the
wsdl:part/@name attribute as the localname part, and whose assigned namespace is taken
from the value of the soapbind:body/@namespace attribute. If the
soapbind:body/@namespaceattribute were not specified, then the child of the SOAP:Body
would not be namespace qualified.
Even for rpc/literal SOAP binding the soapbind:header, soapbind:headerfault and
soapbind:fault assume that style="document", since faults and headers do not contain
parameters. This requirement is consistent with R2716, which requires that all parts for
style="document" not contain the namespace attribute.

R2716 A document-literal binding in a DESCRIPTION MUST NOT have the
namespace attribute specified on contained soapbind:body,

soapbind:header, soapbind:headerfault and soapbind:fault
elements.

R2717 An rpc-literal binding in a DESCRIPTION MUST have the namespace
attribute specified, the value of which MUST be an absolute URI,
on contained soapbind:body elements.

R2726 An rpc-literal binding in a DESCRIPTION MUST NOT have the
namespace attribute specified on contained soapbind:header,
soapbind:headerfault and soapbind:fault elements.

The WSDL definition must be consistent at both abstract (portType) and concrete (binding)
levels.

R2718 A wsdl:binding in a DESCRIPTION MUST have the same list of
wsdl:operations as the wsdl:portType to which it refers. C

All known header faults for an operation should be idenfied in a WSDL description.

R2736 A wsdl:binding in a DESCRIPTION SHOULD contain
soapbind:headerfault elements describing each known header
fault that might be generated.

Eliminate inconsistency between WSDL specification text and the WSDL schema. WSDL 1.1
schema makes the specification of soapbind:headerfault element manadatory on
wsdl:input and wsdl:output elements of an operation, where as the WSDL 1.1 specification
marks them optional.

R2719 A wsdl:binding in a DESCRIPTION MAY contain no
soapbind:headerfault elements if there are no known header
faults.

A Web service definition should include all faults known at the time the service is defined.
There is also need to permit generation of new faults that had not been indentified when the
Web service was defined.

R2740 A wsdl:binding in a DESCRIPTIONs SHOULD contain a
soapbind:fault describing each known fault.

R2741 A wsdl:binding in a DESCRIPTIONs SHOULD contain a
soapbind:headerfault each known header fault.

R2742 A MESSAGE MAY contain fault detail elements in a soap:Fault
element that are NOT described by a wsdl:fault element in the
corresponding WSDL description.

R2743 A MESSAGE MAY contain fault detail elements in a soap:Header
element that are NOT described by a wsdl:headerfault element in
the corresponding WSDL description.

The WSDL 1.1 schema is inconsistent with the WSDL 1.1 specification here and incorrectly
names the attribute parts and gives a type of "NMTOKENS". The schema is incorrect since
each soapbind:header element references a single part.

R2720 A wsdl:binding in a DESCRIPTIONs MUST use the attribute named
part with a Schema type of "NMTOKEN" on all contained
soapbind:header and soapbind:headerfault elements. It MUST
NOT use the attribute named parts on contained soapbind:header
and soapbind:headerfault elements.

For example,
CORRECT:

<binding name="StockQuoteSoap" type="tns:StockQuotePortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="SubscribeToQuotes">

 <input message="tns:SubscribeToQuotes">

 <soap:body parts="body" use="literal"/>

 <soap:header message="tns:SubscribeToQuotes"

 part="subscribeheader" use="literal"/>

 </input>

 </operation>

</binding>

Eliminate inconsistency between WSDL1.1 specification text and the schema. The WSDL
1.1 schema does not list the name attribute.

R2721 A wsdl:binding in a DESCRIPTION MUST have the name attribute
specified on all contained soapbind:fault elements.

Eliminate inconsistency between WSDL 1.1 specification text and the schema.
WSDL 1.1 specification section 3.6 soap:Fault grammar, indicates that the use attribute of
fault is required while in the schema the use attribute is defined as optional.
Also ensure the correct value is provided for the use attribute when present and identify the
correct default value for the attribute when omitted.

R2722 A wsdl:binding in a DESCRIPTION MAY specificy the use attribute
on contained soapbind:fault elements. C

R2723 A wsdl:binding in a DESCRIPTION if the use attribute on a
contained soapbind:fault element is present, its value MUST be
"literal".

R2728 A wsdl:binding in a DESCRIPTION that omits the use attribute on a
contained soapbind:fault element MUST be interpreted as though
use="literal" had been specified. C

For interoperability, it is important to define how a conformant port should behave when a
message that does not conform to its WSDL description is received.

R2724 If an INSTANCE receives a message that is inconsistent with its
WSDL description, it MUST return a soap:Fault with a faultcode of
"VersionMismatch", or "MustUnderstand", or "Client".

R2725 If an INSTANCE receives a message that is inconsistent with its
WSDL description, it MUST check for "VersionMismatch", or
"MustUnderstand", or "Client" fault conditions in that order.

The description in section 3.5 of the WSDL 1.1 specification could be interpreted to mean
the RPC response wrapper element must be named identical to the name of the
wsdl:operation.

R2729 A MESSAGE described with an rpc-literal binding that is a response
message MUST have a wrapper element whose name is the
corresponding wsdl:operation name suffixed with the string
"Response".

For rpc-literal SOAP messages, the WSDL 1.1 specification is not clear what namespace, if
any, the accessor elements for parameters and return value are a part of. Different
implementations make different choices, leading to interoperability problems. Settling on one
of the alternatives is crucial to achieving interoperability. The Basic Profile chose to place the
part accessor elements in no namespace as it is simple, covers all cases and does not lead
to logical inconsistency.

R2735 A MESSAGE described with an rpc-literal binding MUST place the
part accessor elements for parameters and return value in no
namespace.

For rpc-literal SOAP messages, the WSDL 1.1 specification is not clear on what the correct
namespace qualification is, for the child elements of the part accessor elements, when the
corresponding abstract parts are defined to be of types from a different namespace than the
targetNamespace of the WSDL description for the abstract parts. The Basic Profile chose to
qualify the child elements of the part accessor elements with the targetNamespace in which
their types (elements and attributes) were defined.

R2737 A MESSAGE described with an rpc-literal binding MUST namespace
qualify the children of part accessor elements for parameters and
return with the targetNamespace in which their types are defined.

The WSDL1.1 spec in sect 3.5 states:

"The part names, types and value of the namespace attribute are all inputs to the encoding,
although the namespace attribute only applies to content not explicitly defined by the
abstract types."
Yet, it doesn't explicitly state that the element and attribute content of the abstract
(complexType) types is namespace qualified to the targetNamespace in which those
elements and attributes were defined. WSDL was intended to function in much the same
manner as XML Schema. Hence, implementations must follow the same rules as for XML
Schema. If a complexType defined in targetNamespace A were imported and referenced in
an element declaration in a schema with targetNamespace B. The element and attribute
content of the child elements of that complexType would be qualified to namespace A and
the element would be qualified to namespace B.
For example,

CORRECT:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:bar="http://example.org/bar/"

targetNamespace="http://example.org/bar/"

xmlns:foo="http://example.org/foo/">

<types>

 <xs:schema targetNamespace="http://example.org/foo/"

 xmlns:tns="http://example.org/foo/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xs:complexType name="fooType">

 <xs:sequence>

 <xs:element ref="tns:bar"/>

 <xs:element ref="tns:baf"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="bar" type="xs:string"/>

 <xs:element name="baf" type="xs:integer"/>

 </xs:schema>

</types>

<message name="BarMsg">

 <part name="BarAccessor" type="foo:fooType"/>

</message>

<portType name="BarPortType">

 <operation name="BarOperation">

 <input message="bar:BarMsg"/>

 </operation>

</portType>

<binding name="BarSOAPBinding" type="bar:BarPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http/"
style="rpc"/>

 <operation name="BarOperation">

 <input message="bar:BarMsg">

 <soap:body use="literal"/>

 </input>

 </operation>

</binding>

<service name="serviceName">

 <port name="BarSOAPPort" binding="bar:BarSOAPBinding">

 <soap:address location="http://example.org/myBarSOAPPort"/>

 </port>

</service>

</definitions>

CORRECT:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:foo="http://example.org/foo/">

 <s:Header/>

 <s:Body>

 <m:BarOperation xmlns:m="http://example.org/bar/">

 <BarAccessor>

 <foo:bar>String</foo:bar>

 <foo:baf>0</foo:baf>

 </BarAccessor>

 </m:BarOperation>

 </s:Body>

</s:Envelope>

Editors' note:The examples above demonstrate the purpose of this requirement. The
first segment shows a WSDL that defines some schema in the http://example.org/foo/

namespace in the wsdl:types section contained within a wsdl:definitions that has as its
targetNamespace http://example.org/bar/. Thus, we have a type declared in one
namespace and the containing element defined in another. The resulting SOAP
message for BarOperation is shown in the segment that follows.

WSDL 1.1 specification is not clear if all soapbind:headers specified on wsdl:input or
wsd:output of an operation in the SOAP binding section of a WSDL document must be
included in the resultant SOAP messages transmitted. Basic Profile chose to make all the
headers mandatory as there is no way in WSDL 1.1 to mark a header optional.

R2738 A MESSAGE MUST include all soapbind:headers specified on
wsdl:input or wsd:output of an operation wsdl:binding that
describes it.

Headers are SOAP's extensibility mechanism and headers that are not defined in the WSDL
document may need to be included in the SOAP messages for various valid reasons
described in SOAP.

R2739 A MESSAGE MAY contain headers that are not described in the
wsdl:binding that describes it. These headers MAY (or may not)
have the mustUnderstand attribute set to '1'.

Interoperability testing has demonstrated that requiring the value of the SOAPAction HTTP
Header Field to be quoted increases interoperability of implementations. Even though HTTP
allows for the value of HTTP Header Fields to be unquoted, some implementations require
that the value be quoted.
The SOAPAction header is purely a hint to processors. All vital information regarding the
intent of a message is carried in the Envelope.

R2744 A MESSAGE MUST contain a SOAPAction HTTP header field with a
quoted value equal to the value of the soapAction attribute of
soapbind:operation, if present in the corresponding WSDL
description.

R2745 A MESSAGE MUST contain a SOAPAction HTTP Header Field with a
quoted empty string, if in the corresponding WSDL description, the
soapAction of soapbind:operation is either not present, or present
with an empty string as its value.

R2746 A RECEIVER MAY respond with a Fault if the value of the
SOAPAction HTTP Header Field is not quoted.

For example,
CORRECT:

A WSDL Description that has:

<soapbind:operation soapAction="foo" />

results in a message with a corresponding SOAPAction HTTP header field

as follows:

SOAPAction: "foo"

CORRECT:

A WSDL Description that has:

<soapbind:operation />

or

<soapbind:operation soapAction="" />

results in a message with a corresponding SOAPAction HTTP header field

as follows:

SOAPAction: ""

The wsdl:required attributed has been widely misunderstood and used by WSDL writers
sometimes to incorrectly to indicate the optionality of soapbind:headers. The wsdl:required
attribute, as specified in WSDL1.1, is an extensibility mechanism aimed at WSDL
processors. It allows new WSDL extension elements to be introduced in a graceful manner.
The intent of wsdl:required is to signal to the WSDL processor whether the extension
element needs to be recognized and understood by the WSDL processor in order that the
WSDL description be correctly processed. It is not meant to signal conditionality or
optionality of some construct that is included in the messages. For example,
wsdl:required='false' on a soapbind:header element must not be interpreted to signal to the
WSDL processor that the described SOAP header block is conditional or optional in the
messages generated from the WSDL description. It is meant to be interpreted as "in order to
send a message to the endpoint that includes in its description the soapbind:header element,
the WSDL processor MUST understand the semantic implied by the soapbind:header
element".
The default value for the wsdl:required attribute for WSDL 1.1 SOAP Binding extension
elements is "false". Most WSDL descriptions in practice do not specify the wsdl:required
attribute on the SOAP Binding extension elements, which could be interpreted by WSDL

processors to mean, the extension elements may be ignored. The Basic Profile requires that
all WSDL SOAP 1.1 extensions be understood and processed by the WSDL processors,
irrespective of the presence or the value of the wsdl:required attribute on an extension
element.

R2747 A WSDL RECEIVER MUST understand and process all WSDL 1.1
SOAP Binding extension elements, irrespective of the presence or
absence of the wsdl:required attribute on an extension element;
and irrespective of the value of the wsdl:required attribute, when
present.

R2748 A WSDL RECEIVER MUST NOT interpret the presence of the
wsdl:required attribute on a soapbind extension element with a
value of 'false' to mean the extension element is optional in the
messages generated from the WSDL description.

4.9 XML Schema

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• XML Schema Part 1: Structures.
• XML Schema Part 2: Datatypes.

WSDL 1.1 uses XML Schema as one of its type systems. This profile mandates the use of
XML Schema as the type system for WSDL descriptions of Web Services.

R2800 DESCRIPTIONs MAY use any construct from XML Schema 1.0.

R2801 DESCRIPTIONs MUST use XML Schema 1.0 Recommendation, with
the namespace URI "http://www.w3.org/2001/XMLSchema".

5. Service Publication and Discovery
When publication or discovery of Web services is required, UDDI is the mechanism the
Basic Profile has adopted to describe Web service providers and the Web services they
provide. Business, intended use, and Web service type descriptions are made in UDDI
terms; detailed technical descriptions are made in WSDL terms. Where the two
specifications define overlapping descriptive data and both forms of description are used,
the Basic Profile specifies that the descriptions must not conflict.

Registration of Web service instances in UDDI registries is optional. By no means do all
usage scenarios require the kind of metadata and discovery UDDI provides, but where such
capability is needed, UDDI is the sanctioned mechanism.

Editors' note:The Web services that constitute UDDI V2 are not fully conformant with
the Basic Profile 1.0 because they do not accept messages encoded in both UTF-8
and UTF-16 as required by the profile. (They accept UTF-8 only.) That there should be
such a discrepancy is hardly surprising given that UDDI V2 was designed and, in many
cases, implemented before the Basic Profile was developed. UDDI's designers are
aware of UDDI V2's nonconformance and will take it into consideration in their future
work.

This portion of the profile incorporates the following specifications by reference;

• UDDI Version 2.04 API Specification, Dated 19 July 2002.
• UDDI Version 2.03 Data Structure Reference, Dated 19 July 2002.
• UDDI Version 2 XML Schema.

5.1 bindingTemplates

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• UDDI Version 2.03 Data Structure Reference, Section 7.

UDDI represents Web service INSTANCEs as uddi:bindingTemplate elements. The
uddi:bindingTemplate plays a role that is the rough analog of the wsdl:port, but provides
options that are not expressible in WSDL. To keep the WSDL description of an INSTANCE
and its UDDI description consistent, the profile places the following constraints on how
uddi:bindingTemplate elements may be constructed.

WSDL's soapbind:address element requires the network address of the INSTANCE to be
directly specified. In contrast, UDDI V2 provides two alternatives for specifying the network
address of INSTANCEs it represents. One, the uddi:accessPoint, mirrors the WSDL
mechanism by directly specifying the address. The other, the uddi:hostingRedirector,
provides a Web service-based indirection mechanism for resolving the address, and is
inconsistent with the WSDL mechanism.

R3100 REGDATA of type uddi:bindingTemplate representing a conformant
INSTANCE MUST contain the uddi:accessPoint element.

For example,
INCORRECT:

<bindingTemplate bindingKey="...">

 <description xml:lang="EN">BarSOAPPort</description>

 <hostingRedirector bindingKey="..."/>

 <tModelInstanceDetails>

 ...

 </tModelInstanceDetails>

</bindingTemplate>

CORRECT:

<bindingTemplate bindingKey="...">

 <description xml:lang="EN">BarSOAPPort</description>

 <accessPoint>http://example.org/myBarSOAPPort</accessPoint>

 <tModelInstanceDetails>

 ...

 </tModelInstanceDetails>

</bindingTemplate>

5.2 tModels

This portion of the profile modifies and refers to the following specifications (or sections
thereof);

• UDDI Version 2.03 Data Structure Reference, Section 8.

UDDI represents Web service types as uddi:tModel elements. (See UDDI Data Structures
section 8.1.1.) These may, but need not, point (using a URI) to the document that contains
the actual description. Further, UDDI is agnostic with respect to the mechanisms used to
describe Web service types. The Basic Profile cannot be agnostic about this because
interoperation is very much complicated if Web service types do not have descriptions or if
the descriptions can take arbitrary forms.

The UDDI API Specification, appendix I.1.2.1.1 allows but does not require uddi:tModel
elements that use WSDL to describe the Web service type they represent to state that they
use WSDL as the description language. Not doing so leads to interoperability problems
because it is then ambiguous what description language is being used.

It is not easy and in some cases it may be impossible to determine whether a given
uddi:tModel represents a conformant Web service type by inspection alone because
uddi:tModel elements describing conformant and non-conformant Web service types can
look very similar. It needs to be easy for inquirers to determine whether a given uddi:tModel
conforms and to discover conforming uddi:tModel elements.

Therefore the Basic Profile places the following constraints on how uddi:tModel elements
that describe Web service types may be constructed:

The profile chooses WSDL as the description language because it is by far the most widely
used such language.

R3002 REGDATA of type uddi:tModel representing a conformant Web
service type MUST use WSDL as the description language.

For the uddi:overviewURL in a uddi:tModel to resolve to a wsdl:binding, the profile must
adopt a convention for distinguishing among multiple wsdl:bindings in a WSDL document.
The UDDI Best Practice for Using WSDL in a UDDI Registry specifies the most widely
recognized such convention.

R3010 REGDATA of type uddi:tModel representing a conformant Web
service type MUST follow V1.08 of the UDDI Best Practice for
Using WSDL in a UDDI Registry.

To specify that conformant Web service types use WSDL, the profile adopts the UDDI
categorization for making this assertion.

R3003 REGDATA of type uddi:tModel representing a conformant Web
service type MUST be categorized using the uddi:types taxonomy
and a categorization of "wsdlSpec".

It would be ambiquous if the conformance claim a uddi:tModel made were not consistent
with the claim made by the wsdl:binding it uses.

R3004 REGDATA of type uddi:tModel MUST be constructed so that the
conformance claim it makes is consistent with the conformance
claim made by the wsdl:binding to which it refers.

The natural mechanism in UDDI for adding attributes to a uddi:tModel is to define and use a
category system. The profile adopts this mechanism to add the ability for uddi:tModels to
assert conformance with WS-I profiles, and with the Basic Profile in particular.

R3020 REGDATA of type uddi:tModel claiming conformance with a WS-I
profile MUST be categorized using the ws-i-org:conformsTo
taxonomy.

R3030 REGDATA of type uddi:tModel claiming conformance with a the
Basic Profile MUST use the ws-i-org:conformsTo categorization
value of "http://www.ws-i.org/profiles/base/1.0".

For example,
CORRECT:

<tModel tModelKey="...">

 <name>BarSOAPService</name>

 <description xml:lang="EN">Barâ€™s SOAP Service</description>

 <overviewDoc>...</overviewDoc>

 <categoryBag>

 <keyedReference

 tModelKey="uddi:..."

 keyName="ws-I_conformance:BasicProfile1.0"

 keyValue="http://www.ws-i.org/profiles/basic/1.0" />

 </categoryBag>

Editors' note:The value of the categorization in R3030 is intended to match the value
used in the resolution of issue w27 concerning how to mark WSDL elements that
conform to the profile. If the value representing the Basic Profile 1.0 changes in the
final resolution, the value used here should be changed to match.

Since wsdl:service elements are not necessarily mapped to a single uddi:businessService
and are also not subject to conformance claims, it would be unclear what it meant if a
uddi:businessEntity or a uddi:businessService element were to claim conformance with
the Basic Profile. Also, uddi:bindingTemplate elements can't be categorized because the
UDDI V2 XML Schema does not provide a uddi:categoryBag for them. Hence, the
conformance claim made by wsdl:port elements can't be documented in the corresponding
uddi:bindingTemplate.

R3005 REGDATA other than uddi:tModel elements representing
conformant Web service types MUST NOT be categorized using
the ws-i-org:conformsTo taxonomy and a categorization of
"http://www.ws-i.org/profiles/base/1.0".

6. Security
As is true of all network-oriented information technologies, the subject of security is a crucial
one for Web services. For Web services, as for other information technologies, security
consists of understanding the potential threats an attacker may mount and applying
operational, physical, and technological countermeasures to reduce the risk of a successful
attack to an acceptable level. Because an "acceptable level of risk" varies hugely depending
on the application, and because costs of implementing countermeasures is also highly
variable, there can be no universal "right answer" for securing Web services. Choosing the
absolutely correct balance of countermeasures and acceptable risk can only be done on a
case by case basis.

That said, there are common patterns of countermeasures that experience shows reduce
the risks to acceptable levels for many Web services. The Basic Profile adopts, but does not
mandate use of, the most widely used of these: HTTP secured with either TLS 1.0 or SSL
3.0 (HTTPS). That is, conformant Web services may use HTTPS; they may also use other
countermeasure technologies or none at all.

HTTPS is widely regarded as mature standard for encrypted transport connections to
provide a basic level of confidentiality. HTTPS thus forms the first and simplest means of
achieving some basic security features which are required by many real-world web service
applications. HTTPS may also be used to provide client authentication through the use of
client-side certificates.

This portion of the profile incorporates the following specifications by reference;

• RFC2818: HTTP Over TLS.
• RFC2246: The TLS Protocol Version 1.0.
• The SSL Protocol Version 3.0.
• RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile.

6.1 The Use of HTTPS

HTTPS is such a useful, widely understood basic security mechanism that the profile needs
to allow it.

R5000 An INSTANCE MAY require the use of HTTPS.
R5001 If an INSTANCE requires the use of HTTPS, the location attribute of

the soapbind:address element in its wsdl:port description MUST
be a URI whose scheme is "https"; otherwise it MUST be a URI
whose scheme is "http".

Simple HTTPS provides authentication of the Web service instance by the consumer but not
authentication of the consumer by the instance. For many instances this leaves the risk too
high to permit interoperation. Including the mutual authentication facility of HTTPS in the
profile permits instances to use the countermeasure of authenticating the consumer. In
cases in which authentication of the instance by the consumer is insufficient, this often
reduces the risk sufficiently to permit interoperation.

R5010 INSTANCEs MAY require the use of HTTPS with mutual
authentication.

6.2 Certificate Authority

Successful use of basic HTTPS requires the consumer to agree that the instance's
certificate was issued by an acceptable authority. Successful use of mutual authentication
additionally requires the instance to agree that the consumer's certificate was issued by an
acceptable authority. The choice of which certificate authorities are acceptable is an
important consideration in the effectiveness of using HTTPS, but is a policy decision that is
beyond the scope of the profile.

R5100 If an INSTANCE requires use of basic HTTPS, it MUST choose a
certificate authority for its certificate that is acceptable to the
consumer.C

R5110 If an INSTANCE requires the use of HTTPS with mutual
authentication, it MUST find the choice of certificate authority for
the consumer's certificate acceptable.C

6.3 Permitted HTTPS Encryption Algorithms

Successful use of HTTPS requires the consumer and the instance to agree on a mutually
acceptable encryption algorithm. The choice of which encryption algorithms are acceptable
is an important consideration in the effectiveness of using HTTPS, but is a policy decision
that is beyond the scope of the profile.

R5200 If an INSTANCE requires the use of HTTPS, it MUST choose an
encryption algorithm that is acceptable to the consumer.C

